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Outline

» First part: an historical account of the
science of ocean predictions

» Second part: operational oceanography and
the operational ocean services

 Third part: Global, regional and coastal
seas forecasting systems

* Fourth part: societal benefit applications
* Lessons learned
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Third part: Global, regional and
coastal seas forecasting

systems

1.  Global CMCC system and relocatable
nested systems

2. Mediterranean Sea Copernicus system

3. The new coastal and harbor forecasting
systems
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Global and relocatable
fc_)recastln? models:
the incremental approach
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cmee GGlobal Ocean-lce model

Centro Euro-Mediterraneo

sui Cambiamenti Climatici

lovino et al., 2014, lovino et al., 2016

3963

Ocean/Sea Ice code

NEMO / LIM: OPA is a finite difference, hydrostatic,
rimitive e%atlon ocean general circulation model coupled to 000
o%valn—la— euve sea Ice Model. Z-coordinates and linear free

surface

Mesh

Global tri-polar grid: horizontal re'solution.slgacing from 6.9km
at the equator to ~2km at high latitudes with 98 vertical levels 1000
(5762 x 3963 x 98 points) :

Bathymetry Etopo2 (deep ocean) + GEBCO (continental - o
shelves) + Bedmap2 (Antarctic region) + hand editing s s 4000 0 w2
Bottom topography represented as partial steps S P ;s

Initialization o
Temperature and Salinity from WOA 2013
Sea ice properties from 1/4° ocean reanalysis

Atmospheric forcing
Bulk CORE-II formulation , . .
2003-2013: Era-Interim atmospheric forcm% (174" )
2014-2016: ECMWF operational system (1/8" )
River run-off from Dai et al. (2009) - global annual
discharge of ~1.32 Sv

Output (ocean and sea ice): 3D variable = 10Gb for a time T T~ S T TR
record depth (m)
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cmee Global Ocean-lce model

sui Cambiamenti Climatici

lovino et al., 2014, lovino et al., 2016

Extensive Model validation
With observational data
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Forecasting system:
assimilation scheme

@ 3Dvar assimilation

scheme with daily updates from multiple data

sources (Storto et al., 2014) . _
@ Nudging of sea surface temperature and sea ice concentration)

@ XBT, CTD, Argo,
moorings,
marine
mammals

@ along-track

satellite altimetry

observations
(Jason-2, Altika
and CryoSat2)

@ SST relaxation
toward NOAA
1/4~ Analyses
(15 days)

& @ SSS relaxation
toward monthly
objective
analysis of
MetOffice EN4
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® ¢cc Global Ocean

sui Cambiamenti Climatici

Forecasting system:
The operational chain
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3 24hr Model Simulation + Assimilation
- Onc'e a Wee'k -the system restarts one week
Sy P earlier to assimilate all observed data.
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CC Global Forecasting System:
Quality assessment too
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ancc  (Global Ocean

sui Cambiamenti Climatici

Forecasting system:
SST signature of a hurricane




Rilocatable forecasting:
limited area modelling
0 zoom in areas of interest
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Need to define; grid refinement technique, the spin-up time, now many nestings to
reach the required resolution, the lateral open boundary conditions
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Rilocatable forecasting:
limited area modelling
0 zoom in areas of interest

* The question is: can limited area ocean models
increase coarse resolution forecast accuracy?

* Limited area forecasting requires to consider:
— Coastal geometry details
— High resolution bathymetry
— Estuarine forcings

— Shelf break dynamics
— The initialization problem
— The lateral boundary condition problem

— Surface atmospheric forcing of adequate resolution
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Initialization problem:
the spin up time

* Determination of spin-up time for the nested model
(Simoncelli et al., DAO, 2013, De Dominicis et al., 2014)
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Initialization problem:
the interpolation from coarser
resolution models

Re-gridding of coarser fields in the finer grid (De
Dominicis et al. OCDYN, 2013)

i @ coarse grid

o e | Red: velocity interpolated from coarse grid
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Lateral boundary condition
problem
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A For the tracers and total velocities at outflow/inflow:
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B Forthe barotropic component of velocity field, new GENERALIZED

FLATHER BOUNDARY CONDITION has been developed (Oddo and
Pinardi, 2008)

H. +n C 1
UF= C CUC_ N _ (...)
" H,+n; ! HF+nF(nC nF)

C For different topography at the open boundaries INTERPOLATION

CONSTRAINT ( Pinardi et al., 2003)
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Relocatable structured and
unstructured model
(SURF, Trotta et al., 2015)

Main characteristics:
1) Increase resolution only when it is needed
and add physics, adapted to local conditions
2) Few hours deployment
3) Multiple nesting
~ .4) Short term forecasting
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First Parent domain
6.5 km Operational model

Second parent domain
2.2 km model

Child domain
700 m model
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Relocatable structured and
unstructured model
(SURF, Trotta et al., 2015)
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Relocatable modelling with

unstructured grid models
(Federico et al., 2015)
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Relocatable modelling:

multiple nesting to reach the
submesoscales

vesti First nesting. 2100 m

vesr; oecond nesting 700 m - Third nesting 200 m
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OPErniCuUs  Mediterranean subsystem:

he European Earth Observation Programme
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Regional forecasting:
the Mediterranean Sea
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Regional forecasting:
the Mediterranean Sea
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Gpernicus Mediterranean subsystem:
rrmmmerem - the quality component
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The new coastal and harbor
forecasting systems
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Forecasting at the harbor scale
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Conclusions — Part |l

obal ocean forecasting systems are becoming
accurate but:

— bathymetry is not accurate enough

— River runoff still parametrized (new
iIntermediate estuarine models are coming!)

— Tides not always included

— Observations are still in near real time, should
improve the timeliness also for satellite data
post-processing, river inputs

* Relocatable ocean modelling, starting from the
global or regional forecasts, with structured and
unstructured grid models, can seamlessly connect
the open ocean with the harbor scale
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